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By using (61), (60), (49) together with the relation 

exp [ - a ( x  - Xo) 2 ] * exp [ - b x  2 ] 

-- 6(x - Xo) * {exp [ - a x  2 ] * exp [ -  bx2]}, 

we obtain (26), which is also valid for R = 1. 
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Abstract 

Strain, as determined by diffraction techniques, is 
calculated from its constituents. First, the fraction of 
the crystals that have the proper orientation for 
diffraction. One degree of freedom is present: the 
angle of rotation ~ about the scattering vector that 
the diffracting crystals have in common. The proper 
orientations, expressed in Euler angles, lie on a line 
('trace') in orientation space. The density along the 
trace is asserted to be known as a Fourier series in 
~ .  Second, the strain in the diffracting crystals. The 
simplest possible models are discussed: the Voigt and 
Reuss approximations. The symmetries of the crystal 
(m3 or m 3 m )  and of the orientation distribution 
function (o.d.f.) are taken into account. The dilatation 
in spacing of the reflecting planes is found as a Fourier 
series in ~ also. Only the zeroth, first and second 
harmonic (including phase angles: five parameters) 
play a part. The diffraction strain is the average over 
the angle ~ of the dilatation, weighted with the 
product of the orientation density and the square of 
the structure factor. For each contributing trace, the 
corresponding Fourier coefficients have to be multi- 
plied and added to obtain the diffraction strain. The 
symmetry of the diffraction pole figure is derived. 

I. Introduction 

The existence of lattice distortions in polycrystalline 
(metal) samples is well established by means of 
diffraction techniques. The interpretation of these 
strains is still the subject of discussion. More 
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specifically, the question whether these strains can be 
explained by longer-range internal stresses and the 
character of the relation between the measured strain 
and the originating stresses is not yet clear. In this 
paper the influence of texture in the sample is studied. 
A very simple model is adopted: the material is sup- 
posed to be single phase, the orientation distribution 
function is known and either the stress (Reuss model) 
or the strain (Voigt model) is uniform over the irradi- 
ated volume.* Even in this model the treatment is 
elaborate because of the many parameters involved. 
The measured diffraction strain is a weighted average 
of the dilatation in spacing of the diffracting set of 
planes. The average is split into its constituents: the 
volume fraction of the differently oriented grains that 
diffract, where the texture plays a part, and the strain 
in these crystals, where the elastic anisotropy is deter- 
mining. It is shown that texture leads to the observed 
"non-linearities" and "oscillations' in the plots of dHK L 
vs sin2 t~. Comparison with experiments must show 
whether the texture is responsible for the entire effect 
or that the other causes mentioned in the literature 
(D/Slle, 1979; James & Cohen, 1980; Hauk, 1984) play 
a part also. 

2. Experimental procedures to measure 
diffraction strain 

The spacing in the set of reflecting planes ( H K L )  
is determined by diffraction techniques. The mono- 

* This implies that any effect of prior plastic deformation leading 
to a correlation between stress or deformation state and orientation 
of the grain is not considered. 
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chromatic incident beam selects for reflection those 
grains in the specimen that have the proper orienta- 
tion, i.e. the scattering vector matches the proper 
reciprocal-lattice vector. The orientation of the scat- 
tering vector is determined by the angle $, with respect 
to the normal to the surface and the angle q~, with 
respect to a specified direction in the surface of the 
specimen. We return to these definitions in § 3. The 
diffracted beam can be analysed for three properties: 

(i) The intensity, which depends on the volume 
fraction of the grains with the proper orientation for 
diffraction. This volume fraction depends on the 
orientation distribution function (o.d.f.) that 
describes the texture. For given ~ and ~o, all grains 
that have the direction [ HKL] in common contribute 
to the diffracted intensity. Apparently there is still 
one degree of freedom in the orientation over which 
it is integrated: the rotation angle ~ '  about the axis 
[HKL]. As pointed out in the Introduction, the o.d.f. 
is considered to be known. The orientation density 
as a function of ~ and ~0, for given HKL and 
integrated over ~ ,  is the pole figure HKL. 

(ii) The direction of the diffracted beam defines 
an averaged Bragg angle and, with given wavelength, 
an averaged lattice spacing. In general this spacing 
is not equal to the equilibrium spacing observed in 
single crystals. The difference is transformed into a 
strain (dilatation) (e'zz). Detailed measurements show 
that this 'diffraction strain' depends on the angles 
and ~o. In the literature much attention is paid to the 
relation between this strain and sin 2 ~b. It is the aim 
of this paper to calculate this diffraction strain for 
given stress and texture for the simplest cases: the 
Voigt model and the Reuss model. 

(iii) The line width of the diffraction peak is 
usually much larger than for stress-free single crystals. 
Even a correction for the small size of the diffracting 
grains is not sufficient to explain the observed width. 
In view of the fact that all diffracting grains do not 
have the same orientation (degree of freedom ~o"), 
one expects that elastic anisotropy may cause a vari- 
ation in diffraction strain as a function of ~o". The 
line width then represents a measure for this variation 
in diffraction strain. In this paper we do not deal with 
this aspect, although the treatment given here would 
allow for such a study. 

3. Frames of reference and orientation relations 

In textured materials the orientation of a particular 
grain in the specimen is important. The orientation 
relation is described by assigning frames of reference 
and giving the rotation that brings one frame into 
coincidence with the other. Symmetry implies that 
more than one choice of frame is possible and leads 
to equivalences that complicate matters. In this sec- 
tion we deal with these choices ahd ambiguities. 

All frames of reference that are introduced will be 
right handed, so that two axes suffice to determine 
the third. 

The lab frame is based on the diffraction set up. 
The scattering vector is the z' axis. The y'  axis is 
perpendicular to the plane of incidence. The vector 
product of the wave vectors of the incident (K) and 
diffracted (kr) beams (k, x kr) points in the positive 
y'  direction. The ' i s  indicative of components in the 
lab frame of reference. 

The specimen frame. It is assumed that the specimen 
is flat: rolled or ground. The z axis is normal to the 
flat surface and pointing outwards. The x axis is 
parallel to the rolling or grinding direction. In this 
paper, symmetry in the specimen refers to symmetry 
in the orientation distribution function (see § 5). Since 
the orientation is given with right-handed frames 
only, mirror or inversion symmetry cannot be present 
in the specimen. In a ground specimen one may expect 
that a rotation over 180 ° about the y axis results in 
an equivalent orientation. Grinding the top face in 
one direction is equivalent to grinding the bottom 
face in the opposite direction. Accordingly, the 
properties of the ground specimen belong to the 
monoclinic point group, with a twofold axis parallel 
to the transverse (y) direction. A rolled specimen may 
belong to the orthorhombic point group. Both the 
transverse and the rolling direction are twofold axes, 
with the result that the surface normal is twofold also. 
In a ground specimen, two orientations are always 
equivalent and in a rolled specimen four. 

In the crystal frame all components are given in 
capital letters. Only cubic crystals are considered. The 
frame of reference coincides with the cube axes. If 
the crystal structure does not possess an inversion 
centre, then distinction has to be made between left- 
and right-handed crystals, which must be treated as 
different phases, each with its own o.d.f. We avoid 
this complication by introducing an inversion centre. 
Two point groups remain: m3 and m3m. The crystals 
in m3 can be represented by one of 12 equivalent 
right-handed frames of reference (point group 23). 
For crystals in point group m3m there are 24 
equivalent frames of reference (point group 432). 

Now turn to the description of the orientation 
relation. Consider a fixed direction in space. Its coor- 
dinates depend on the frame in which the reference 
is made: 

specimen frame: r 
lab frame: r' 

crystal frame: R. 

The relations between these three can be given by a 
3 × 3 matrix: 

f sin  cos  0 )  
r ' =  | - c o s  ~ cos 0 - s in  q~ cos 0 sin r. (1) 

\ + c o s q ~ s i n O  +sinq~sinO cos 
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Only the 'experimental '  angles ~p and 4, are involved. 

i) R= akCOSq~ flksin~0~ aksin~0~+~kCOS~'~ r'. 

at cos ~o~ fit sin ~o~ at sin ~o~ + fit cos ~o~ 

(2) 

In this relation, indices hkl occur: they represent the 
Miller or Laue indices of the set of reflecting planes, 
normalized to modulus 1. The angle ~o~ is the degree 
of freedom already mentioned in § 2. It distinguishes 
between the crystal orientations that have the direc- 
tion [HKL] in common. The relation may seem com- 
plicated, but it is chosen in such a way that equivalent 
orientations of reflecting planes, obtained by permu- 
tations and /o r  changes in sign of the indices hkl, lead 
to equivalent crystal orientations for equal values of 
~ .  The parameters OlhOlkOl I and f l h / 3 k f l l  follow from 
one another by cyclic interchange: 

a h = h ( 1 - h 2 - 2 F ) / N ,  a k = k ( 1 - k 2 - 2 F ) / N ,  

a t = l ( 1 - 1 a - 2 r ) / N ,  /3h=kl(kE-IE)/N, 
(3) 

/3k=lh(lE-h2)/N, /3 ,=hk(ha-k2)/N,  

F = h 2 k 2 +  k212-1 - 12h 2, N = ( F  -4FE+3h2k212) l /2 .  

The parameters F and N are invariant in cubic sym- 
metry. For [HKL] equal to [001], [110] and [111], 
the value of N is zero. In these cases one can make 
use of the result for IHI--Igl: 

2h2+IR=l, t=hk/ lhk[  ( i f h = k = 0 : t = l ) ,  

Ol h = l/v/2, Ol k = tl/x/2, at =-hx/2, 

/3h =--t/x/2, /3k= + l/x/2, /3t=O. 

The 3 x 3 matrix consists of nine elements, whereas 
a rotation is characterized by only three independent 
parameters. Euler angles are more convenient in this 
respect and in common use to describe texture. We 
shall follow Bunge (1982) and others in introducing 
as Euler angles a,/3 and 3' in this order, with rotations 
around Z, X and Z respectively. Instead of /3  we 
introduce h = cos/3 and still refer to them as Euler 
angles that represent the crystal orientation with 
respect to the specimen frame. In symbolic notation: 

R=[ahy]r.  (4) 

The relations between the Euler angles and the par- 
ameters introduced previously, tp, ¢, hkl and ~ ,  are 

h = I cos ~ - qt sin ~, 

( l - - h 2 )  1/2 COS (0~ - -  ~0) ---" O~/ COS ~ - / 3 t  sin ~ ,  

(1 - h2) ~/2 sin (a  - ~0) = I sin ~b + qt cos ~, (5) 

(1 -hE)  ~/2 cos 7 = k c o s  ~ b - - q k  sin ~, 

(1 -- A2) ~/2 sin 3' = h cos ~b - qh sin if, 

Table 1. Orientations, in Euler angles, equivalent to 
a, A, 3' because of symmetry 

T h e  t h r e e f o l d  ax i s  in c u b i c  c ry s t a l s  is n o t  i n c l u d e d  b e c a u s e  it d o e s  
not  c o r r e s p o n d  to  a s i m p l e  t r a n s f o r m a t i o n .  

Specimen 
Monoclinic 
Orthorhombic 

Crystal 
m3 

m3m 

2 ~ r - a  - h  ~r+3' y: twofold 
2 7 r - a  - A  zr+3'  y: twofold 
zr+ a h 3' z: twofold 

a h zr+ 3' Z :  twofold 
~ r + a  - A  z r - 3 '  X:  twofold 

a h 7r/2 + 3' Z:  fourfold 
I r + a  - h  z r - 3 '  X:  twofold 

Table 2. Representative traces for cubic symmetry 
A: H K L ~ --, Euler angles a h 3' 
B: - K  H L ~o~' -~ a h 3' + zr/2 
C: - H  - K  - L  zr-~o~ ~ 2 ~ o - a  - h  3'+~" 
D: K - H  - L  ~'-~p~ ~ 2 ~ o - a  - h  3"+3zr/2 

with 

qh = ah sin ¢~ + flh COS ~0~, 

qk = ak sin ~o~ +/3k COS ~0~, (6) 

ql = at sin ~p~ + 13/cos ~p~. 

These equations may be used to verify the transforma- 
tions given in Tables 2 and 4. 

4. Symmetry in crystal and specimen 

Expressed in Euler angles, the crystal symmetries 
(except the threefold axis in cubic crystals) and the 
specimen symmetry are simple transformations. In 
Table 1 the results relevant for our study are given. 

From a diffraction point of view, however, the other 
description with ~, ~p, hkl, ~'~ is more convenient, 
because it gives the orientation of the diffracting 
grains. Since ~p~ is variable this set of orientations 
corresponds to a line in orientation space. We refer 
to such a set of orientations as a 'trace', with ~p~ as 
parameter along the trace. In cubic crystals H E 4- K 2 + 
L 2 determines the spacing of the reflecting planes. 
There are 48 different combinations (permutations 
and changes in sign) of HKL that contribute to the 
diffracted intensity. In point group m3 they can be 
split into four groups of 12. Within each group all 
choices are equivalent. For each group a representa- 
tive trace is chosen (Table 2). Note that in the trans- 
formation from A to C or D the value of ~p~ also 
changes. In all comparisons between traces such a 
transformation in ¢~ must be taken into account (see 
also Table 4). 

In point group m3 the four traces in Table 2 have 
to be taken into account when discussing diffraction. 
But it can be seen immediately that a rotation over 
90 ° about the Z axis transforms A into B and C into 
D. Hence in point group m3m the traces A and B 
are equivalent as are C and D. Symmetry in the 
indices of the reflecting planes also leads to 
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Table 3. Equivalent traces 

O f  the traces given in Table  2, the equivalent  ones are enclosed 
in{ }. 

Crystal rn3 {a} {B} {C} {D} 
Crystal m3rn {A B} {C D} 
Reflection HHL {A D} {B C} 
Reflection OKL {A C} {B D} 

Table 4. Traces and corresponding Euler angles for 
some orientations of the scattering vector 

A: 0 ~ H K L 
A a : ~ rr + ~o H K L 
Ab: 0 -~o H K L 
Ac: rr - O g' H K L 
C: ~ ~o - H  - K  - L  
Ca: 0 rr+~o - H  - K  - L  
Cb: q, - ~o - H - K - L 
Cc: r r - O  ~o - H  - K  - L  
Ai: 7r - O rr - ~ H K L 

~ a A T 
~o~ 7r+a A Y 

rr+~a~ 7 r + 2 ~ - a  - k  ~'+Y 
~ ' - ~  2 ~ - a  -A ~ ' + y  
zr-~p~ ~ r + 2 ~ - a  -A 7r+ 7 
~" - ~p~' - a  -A 7r+ T 

- ~  7r+a A 7 
• r + ~o~ 2 ~ - a  -A ~-+y 

Table 5. Equivalence in traces caused by specimen 
symmetry 

In m3 crystals there exist also sets where A and C are replaced 
by B and D respectively.  

No symmetry {A} (Aa Cc} {Ab} {Ac Ca} {C} {Cb} 
Monoclinic {A Cb} {Aa Cc} {Ab C} {Ac Ca} 
Orthorhombic {A Aa Cb Cc} {Ab Ac C Ca} 

The traces C and Ai are always equivalent. 

equivalence in traces. The results are summarized in 
Table 3. 

It must be mentioned that these equivalences are 
additive: in point group m3m and reflection HHL 
the four traces are equivalent. 

Up till now the scattering vector has been kept 
fixed in space and the contributing grains determined. 
To detect simple symmetries in the specimen with 
respect to diffraction, four different orientations of 
the scattering vector are introduced. The new values 
of q, and q~ result from inversion (index i), z axis 
twofold axis (index a), xz plane mirror (index b) and 
xy plane mirror (index c). A change in scattering 
vector leads to another set of diffracting crystals. In 
Table 4 the characteristics of the new trace are given 
for A and C. A very similar set for the traces B and 
D also exists. The result that the traces Aa and Cc 
are identical, and also the traces Ac and Ca, was to 
be expected: the direction O, 7r+~ is opposite to 
7r - 0, ¢ and also HKL and - H  - K - L are opposite. 
The trace Ai represents the opposite direction of the 
scattering vector for the same set of planes as in trace 
A. From Table 1 the equivalences given in Table 5 
are found. 

5. Orientation distribution function (o.d.f.) 

The o.d.f, is defined as follows: 

d V / V = f ( a , A ,  7) da dA d7/(8rr2), (7) 

where d V~ V is the volume fraction of the grains that 
have an orientation within the interval da  dA dy 
around a, A, 7. The factor 1/(87r 2) is a normalizing 
factor to make the integral of the o.d.f, over all 
orientations equal to unity. The symmetry of the 
crystal and specimen must be visible in the o.d.f. The 
conditions are given in Table 1. Equivalent traces 
(Tables 2-5) must give the same values as a function 
of (the transformed) ~ .  

6. Stress and strain 

To obtain the diffraction strain an assumption has to 
be made concerning the strain in each diffracting 
crystal. In general, strain and stress in a particular 
grain are not uniform and do not depend solely on 
the orientation of the grain. Factors such as grain 
shape and the orientation with respect to neighbours 
are important. Since this problem has not been solved 
and only an o.d.f, is available, we assert that the strain 
in each grain is uniform and consider two extreme 
cases for the magnitude of the strain: the Voigt and 
the Reuss approximation. 

In the Voigt model, the strain is equal in all grains. 
With the strain as a second-rank tensor % on specimen 
axes, straightforward tensor transformation yields the 
dilatation in the direction 0, ¢ we are interested in. 
One finds 

e'zz = cos 2 ~P sin 2 6e,1 +sin 2 ¢ sin 2 0e22 

+ COS 2 ~ e33 + sin ~ sin 20e23 

+ cos ¢ sin 20e13 + sin 2¢ sin 2 0el> (8) 

The strain measured by the diffraction technique 
yields in this model a result that is the same for every 
set of reflecting planes and is independent of texture. 
If the strain has to be translated into a stress field, 
then the texture will play a part in elastically 
anisotropic crystals. We do not consider such a trans- 
formation. 

Another approximation is the Reuss model: all 
crystals are subject to the same stress. The stress is 
defined as a second-rank tensor % on specimen axes. 
To determine the dilatation in the direction [HKL] 
of a particular grain, the stresses and the elastic con- 
stants of the single crystal (sly, s~2, s44) have to be 
transformed to the lab frame. Both calculations 
involve straightforward tensor transformations. Since 
we consider q~ and the stress components as indepen- 
dent variables we present the result as follows: 

6 

e'zz = ~ { E k o + S o N ( E k l  COS qg~+ E k 2  sin ~ )  
k=l  

+ s o A [ E k 3  c o s  ( 2 q ~  - X )  

+ Ek4 sin (2q~ -- g)]}cr k. (9) 

The contribution of each stress component is given 



P. P E N N I N G  AND C. M. BRAKMAN 161 

Table 6. The coefficients Eki in the Fourier series for e'zz 

i 1 2 3 4 

k 
1 - s i n  2~o sin ~b - c o s  2 ~ sin 2~ sin 2 ~o-cos 2 W cos 2 ~ +sin  2~o cos 
2 +sin 2~ sin ~ - s i n  2 ~o sin 2g, cos 2 ~o-sin 2 ~ cos 2 ~b - s i n  2~ cos 
3 0 sin 2~0 - s i n  2 q, 0 
4 +2 cos ~0 cos q, - 2  sin ~o cos 2q, sin q~ sin 2@ +2 cos q~ sin ~b 
5 - 2  sin ~o cos ~0 - 2  cos ~o cos 2~0 cos ~o sin 26 - 2  sin q~ sin ~0 
6 2 cos 2¢ sin ~b - s i n  2~o sin 2tb - s in  2¢(1 + cos2 t0) - 2  cos 2~0 cos g, 

as a Fourier series in the angle ~0~. The parameters 
N, A and X depend only on hkl. 

S o = S l l  - -  S l 2 - -  S 4 + / 2  

A cos X = 1 - " - 2 h 2 k E l : ( 1 - 3 F ) / N  2 

A sin g = hkl{h4( k2-12) + k4(/2- h2) 

+ / 4 (  h 2 - k 2 ) } / N  2. 

(10) 

The values of the coefficients Eki are given in Table 6. 
The coefficients Ego are not shown in Table 6 

because they can be found more elegantly in another 
way. The transformation of Eko back to the specimen 
frame yields a result that is independent of ~0 and q~, 
an analogous situation to the Voigt model where one 
strain tensor suffices to describe the diffraction strain. 
Furthermore, since the strain tensor is proportional 
to the stress, this ~o~-independent part of the strain 
gives rise to the definition of 'effective' elastic con- 
stants, which give the ~0~-independent part of the 
strain as a function of stress 

eft  eft  st~ = slt - 2SoF; SI2 = Sl2"-t- SoI"'~ 

elf 2(Sl 3SoF). $ 4 4  ~ 1 - -  S12  - -  

In the literature (Hauk, 1955; Macherauch & 
Mfiller, 1961; DSlle & Hauk, 1977; D611e, 1979; James 

eft  1 eft  & Cohen, 1980; Hauk, 1984), s~ and ~s44 are referred 
to as s~ and ½s2 respectively, the so-called quasi- 
isotropic diffraction elastic constants. 

The symmetry in elasticity is the same for crystals 
in the classes m3 and m3m. Hence, the strain along 
traces A and B is equal for the same value of ~ ;  
and also along the traces C and D. But along the 
traces A and C the strain is different. 

7. Diffraction strain pole figure 

In the diffraction experiment a weighted average of 
the single-crystal strains is measured. In general, the 
weighting has to be done over more than one trace, 
dependent on the symmetry of the crystal, specimen 
and strain. The highest number is 4 according to Table 
3 but the lowest number depends on the stress present. 
In general, the strains along the traces A and C are 
unequal and these two traces have to be taken into 
account in spite of any symmetry in the crystal or the 
reflecting plane. 

The weighting factor is in essence proportional to 
the intensity of the beam diffracted by crystals with 

orientation ~o~. It consists, accordingly, of two parts: 
a structure-factor part and an o.d.f, part. The diffracted 
intensity is proportional to the square of the modulus 
of the structure factor. In general, the structure factor, 
for given HKL,  is independent of ~0~ and may be 
considered as constant along the trace. For non- 
equivalent traces the structure factor may be different, 
with one notable exception: H K L  and - H -  K -  L. 
In crystals with an inversion centre, which we con- 
sider here, the structure factors for the traces A and 
C (and also for the pair B, D) are equal. The o.d.f. 
part of the weighting factor is proportional to the 
o.d.f, value. The weighting factor must be normalized 
by means of a constant factor to make its average 
along all relevant traces together equal to unity. 

The strain along the trace was found as a Fourier 
series. The integration over the variable ~o~ can be 
replaced by a summation, if the o.d.f, values along 
the trace are also known as a Fourier series. We need 
to know only the constant (average) and the first and 
second harmonic, since these occur only in the strain. 
This means that we have to know of the entire o.d.f. 
only five Fourier coefficients for each relevant trace. 
The o.d.f, is obtained from intensity pole figures for 
different H K L  by a method introduced by Bunge 
(1982) and expressed as Fourier series in a and 3' 
and Jacobi polynomials in h. What in fact has to be 
done is to transform the o.d.f, as found on the speci- 
men frame to the lab frame. The Fourier coefficients 
that are needed then appear immediately. 

To summarize, the procedure to calculate the 
diffraction strain in a stressed textured material is as 
follows: 

(i) For given crystal and o.d.f, symmetry, deter- 
mine the number of non-equivalent traces, t, for given 
orientation of the diffraction vector (q,, q~) and given 
set of reflecting planes (HKL) .  

(ii) Calculate for the grain with orientation 

h, k, l, d/, ~o, ~o~= a, h, 7: 

(a) the dilatation in spacing e'zz (equation 9); 
(b) the volume fraction D (§ 5); 
(c) the modulus of the structure factor F (§ 7 

above). 
(iii) Calculate the diffraction strain: 

(e'zz) = ~ e'zzDF2d~p'~/~ D F  2 d~o~. (11) 

The integrals extend from 0 to 27r along the t traces. 
Since e'zz and D are known as a Fourier series in ~o~, 
the integrals can be replaced by a summation: 

( e'zz) = ½(1 + 8~.o)( e'zz)~.~D~,~F D~,oF~. 
" r = l  u = O  / a ' = l  

(12) 

8. Symmetry diffraction strain pole figure 

To determine whether the diffraction strain possesses 
simple symmetries, one has to substitute the 
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Table 7. Equivalent traces in a stressed specimen 

In m3 crystals there exist also sets where A and C are replaced by B and 
D respectively. 

o't0" 2 {A Aa Cb Cc} {C Ca Ab Ac} 
0.3 {A Aa Cb Cc C Ca Ab Ac} 
0"4 {A} {C} {Aa Cb Cc} {Ab Ac Ca} 
0"5 {A Cb} {Aa Cc} {CAb} {Ac Ca} 
0"6 {A Aa Cc} {Cb} {Ab} {C Ac Ca} 

Table 8. Symmetry in the diffraction strain pole figure 

For  monocl in ic  point  groups  the symmet ry  axis is given in paren-  
theses. 

Spec imen symmet ry  Stresses present  Point g roup  o f  strain 
pole figure 

Monoclinic 2 (y) 0-t 0"20"30"5 Monoclinic 2 /m(y)  
Orthorhombic 222 0"10"20"30"4 Monoclinic 2/re(x) 

0"10"20-30-s Monoclinic 2/m (y) 
0"10"20"30"6 Monoclinic 2~re(z) 

0"10"20"3 Orthorhombic mmm 

orientation relations given in Table 4 into the equation 
for the diffraction strain. If the change in orientation 
of the scattering vector does not lead to a change in 
the coefficients of O'k, then the orientations are 
equivalent. The result of such an analysis is given in 
Table 7. 

The trace Ai, also given in Table 4, is for all stress 
components equivalent to trace C. So, if one considers 
an experiment where the opposite scattering vector 
is active, the traces Ai and Ci contribute (as well as 
Bi and Di in m3 crystals). But the o.d.f., strain and 
structure factor along these traces are equal to the 
values along the traces C and A (as well as D and 
B in m3 crystals) for ~o~ values that are 1r larger. 
Integration along the relevant traces hence will result 
in the same diffraction strain for any scattering vector 
as compared with its opposite. The diffraction strain 
pole figure shows inversion symmetry. In fact, the only 
symmetry needed to reach this conclusion is that the 
structure factors for HKL and - H  - K - L are equal, 
so that this conclusion holds for any situation where 
Friedel's law is valid. 

From Table 7 the symmetry in the diffraction strain 
pole figure can be deduced. Results are given in 
Table 8. 

Absence of '@ splitting' indicates that the z axis 
possesses twofold symmetry. According to Table 8 
this is only the case in orthorhombic specimen sym- 
metry if 0 "  4 = 0 "  5 = 0. The presence of @ splitting hence 
indicates either the presence of o4 and/or 0-5 in an 
orthorhombic specimen or the absence of orthorhom- 
bic symmetry in the o.d.f, of the specimen. 

A linearity in sin 2 @ vs diffraction strain for given 
~0 is present in the Voigt model and in the 
~o~-independent (isotropic) part of the strain in the 
Reuss model. In textured materials, however, there 
are, for every trace involved, four other terms that 
contribute to the diffraction strain, each comprising 

a stress factor and an o.d.f, factor. The dependence 
of the stress factor on @ is given in Table 6. How the 
o.d.f, factor depends on @ is determined by the tex- 
ture. No off-hand expectations can be given. 

The conclusion must be that in textured materials 
a linear relation between the diffraction strain and 
sin 2 @ is not to be expected. According to our analysis 
(equation 9), all deviations from linearity are propor- 
tional to the elastic anisotropy So. 

9. Example and concluding remarks 

The magnitude of the effect of texture will be illus- 
trated with two examples: cold-rolled steel and cold- 
rolled copper. The texture of these materials is very 
different. The main components are (111)[211] and 
(100)[001], respectively. The o.d.f, data needed in the 
calculations were derived from experimentally deter- 
mined o.d.f.s (steel" Brakman, 1985a; copper: 
Brakman, 1985b). The elastic constants used are s~l 
7.57 (14.93), s~2 -2.82 (-6.26) and So 6.03 (14-56) in 
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Fig. 1. The 112 diffraction strain in cold-rol led steel as a funct ion 
of  sin 2 tO. For  details see text. 
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Fig. 2. The 224 diffraction strain in cold-rol led coppe r  as a funct ion 
of  sin 2 4,. For  details see text. 
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10 -12 m: N-l ;  the data for copper are given in paren- 
theses. The stress was assumed to be uniaxial and 
parallel to the rolling direction. Angle q~ =0.  The 
diffraction strain was calculated for the 112 reflection 
in steel and the 224 reflection in copper. The results 
for steel are given in Fig. 1 and for copper in Fig. 2. 
The straight line gives the results for the texture-free 
materials; the curves are the results for the actual 
materials. 

Our conclusion is that in practical cases the pres- 
ence of texture may lead to an amplitude of the 
oscillations in dHK L VS sin 2 tp that is of the same order 
of magnitude as the diffraction strain itself. 
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Abstract 

Non-linearities in measured diffraction strains are 
frequently observed in textured materials. For the 
case of textured cold-rolled low-carbon steel sheet 
specimens the diffraction strain is analysed in its 
constituents: single-crystallite strain and the orienta- 
tion distribution function of the crystallites. With only 
macro-stresses  0.~ and 0"2 taken into account, a satis- 
factory explanation of practical measurements on 
these steel specimens is obtained. 

I. Introduction 

The 'sin 2 ~b method'  (Hauk, 1955; Macherauch & 
Miiller, 1961; D611e & Hauk, 1977; D611e, 1979; James 
& Cohen, 1980; Hauk, 1984; Hauk & Macherauch, 
1984) is used to determine (residual) stresses from 
diffraction data. The measured diffraction line-shift 
strain often exhibits straight-line behaviour when 
plotted vs sin 2 ~p. From intercepts and slopes the 
stresses may be calculated. The symbol ~ stands for 
the angle between the scattering vector and the speci- 
men's normal direction (ND). The symbol ~0 is used 
for the angle between the projection of the scattering 
vector on the plane of the specimen and rolling direc- 
tion (RD). 

In textured specimens, significant deviations from 
linearity frequently occur (Faninger & Hauk, 1976; 

0108-7673/88/020163-05503.00 

Hauk, Herlach & Sesemann, 1975; Hauk & Sesemann, 
1976; Hauk & Kockelmann, 1977, 1978; Marion & 
Cohen, 1977; Hauk, Krug & Vaessen, 1981; D611e & 
Cohen, 1980; Hauk & Vaessen, 1985; Hauk, Vaessen 
& Weber, 1985; Maurer, Neff, Scholtes & 
Macherauch, 1987). These reports concern cold- 
rolled steel sheets and ~0 - 0. Small or negligible non- 
linearities are reported for measurements in the plane 
q~ = 7r/2. Examples are given in Figs. 1 and 2. In all 
cases the 211 reflection was used. 

It is the purpose of this paper to clarify the physical 
nature of this non-linear diffraction strain behaviour 
for textured cold-rolled low-carbon steel specimens 
using the 211 reflection. The specimens are considered 
to be single phase. The orientation distribution func- 
tion (o.d.f.) of the crystallites (Bunge, 1982) offers a 
quantitative description of crystallographic texture. 
Diffraction strain is an o.d.f.-weighted average of all 
single crystallite strains of the grains engaged in the 
diffraction. The o.d.f, depends in an irregular way on 
4J and q~. Accordingly, linear diffraction strain 
behaviour with respect to sin 2 ~0 cannot be expected. 
It is shown that the behaviour of the o.d.f.'s of cold- 
rolled steel leads to diffraction strain phenomena 
measured in practice. 

An assumption has to be made concerning the stress 
state of the specimen. Only principal stresses o1 and 
0.2 are considered. They operate parallel to the rolling 
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